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Strain of a biomembrane caused by a local tangential force:
Application to magnetic tweezer measurements

A. A. Boulbitch*
Department of Biophysik E22, TU Mu¨nchen, D-85747 Garching bei Mu¨nchen, Germany

~Received 14 April 1998; revised manuscript received 20 July 1998!

Strain field in a cell membrane caused by application of a local force along its surface is studied theoreti-
cally. The cell cytoskeleton is assumed to give rise to a restoring force acting on the membrane. This contri-
bution is shown to localize the membrane displacement. The results are used to discuss magnetic tweezers
experiments on membranes of mouse fibroblasts.
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PACS number~s!: 87.10.1e, 87.19.Rr, 87.16.2b
st
A
dy
y

i

s

t

d
rc
a

ra

o
st
ti

a
lt
er
u
c

sp
ne
t

d
a
th

f

ct
pe

mi-
ee-
ns
vis-
and

x-
ure-
pen-
a
we
a-

ure-

r-

nt

be
:

ers
e; 2,
on-
the
n

Magnetic tweezers make it possible to study a viscoela
behavior of biological materials. Since the paper of
Heilbronn @1# this method was successfully applied to stu
the cytoplasmic viscosity@2#, properties of a vitreous bod
@3#, a mechanical response of a cell cytoskeleton to a tw
applied to its surface@4#. It allowed to study activation of
Ca21 channels in fibroblasts@5#, accumulation ofF-actin at
focal contacts@6#, elasticity and motion of DNA molecule
@7–9#, and viscoelastic properties of actin solutions@10–12#.
In the method described in the papers@11,12# a paramagnetic
bead surrounded by nonmagnetic beads is embedded in
body. Application of inhomogeneous magnetic fieldB gives
rise to a forceF;¹(B)2 acting on the paramagnetic bea
@11#. The latter can be treated as a source of a point fo
applied to a viscoelastic media, the nonmagnetic beads m
ing it possible to study the displacement field in its seve
points. Application of this method to entangled@11# or cross-
linked @12# three-dimensional actin networks showed a go
agreement of the measured strain field with the ela
Green’s function of the three-dimensional isotropic elas
media@12#.

In contrast, the magnetic tweezers study of the membr
of mouse fibroblasts~Fig. 1! showed a contradictory resu
@13#. Membranes of animal cells consist of a lipid bilay
supported by actin cortex. The latter is attached to the b
cell cytoskeleton. Paramagnetic beads coated by fibrone
are placed onto the membrane. Fibronectin provides a
cific binding of the bead to the actin cortex of the membra
Hence the force acting on the bead can be considered as
acting on the actin cortex. The radius of the magnetic bea
approximately 2.5mm. However, the effective contact are
in the place of attachment of bead-coating proteins to
membrane~referred to as ‘‘a disk’’! should be smaller. The
size of the cell lobe~the flat part of the cell, Fig. 1! of the
mouse fibroblast is about 10mm. Thus the approximation o
a localized force is reasonable.

We assume that membrane of a cell and, namely, its a
cortex has viscoelastic properties. There are several ex
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mental observations supporting this assumption. First,
crorheological and macrorheological experiments on thr
dimensional~3D! entangled and cross-linked actin solutio
@11,12,14# showed that these systems demonstrate a
coelastic behavior characterized both by a shear modulus
viscosity. All the more, this kind of behavior should be e
pected in the actin cortex. Second, several direct meas
ments on cell membranes have shown a stress-strain de
dence@4,13,15,16#. We interpret this as a manifestation of
visco-elastic behavior of studied systems. In this paper
focus mainly on an elastic part of the viscoelastic deform
tion of cell membranes in the magnetic tweezers meas
ments.

In a thin elastic plate to which a tangential forceF is
applied the displacement vectoru5u(r ) obeys the equation
of mechanical equilibrium,

Du1
11s

12s
grad divu52f, ~1!

where r is the in-plane radius vector,f52(11s)F/Eh
5F/mh; h is the plate height~in the case under conside
ation h is the height of the membrane!; E is the Young’s
modulus of the plate material ands is the Poisson ratio,m
5E/2(11s) is the shear modulus@17#. One can consider
m* 5mh as the membrane shear modulus. Note that Eq.~1!
is valid for a thin elastic plate@17# and differs from that
describing an elastic 3D body, in which the coefficie

i

FIG. 1. Schematic view of application of the magnetic tweez
method to the case of the mouse fibroblast cell. 1, the substrat
the cell; 3, the cell lobe; 4, the paramagnetic bead; and 5, the n
magnetic bead attached to the cell membrane. Application of
magnetic fieldB causes the forceF acting on the bead and hence o
the membrane cortex.L;10mm is the size of lobe.
3402 ©1999 The American Physical Society



on

e,
or
E
c
os

nd

o
is
s

he
ied
xact
ne
te
s

ents
dict

rupt
-
ther
ntle.

ment
s of
no
the
flat
al

c-
al

f a
llu-
on.
tex,

its
an

tion
ne

g
ole

e,
is-

long
ilar

s of
the
e.
ain
. In
ions
e of

on
tin

iate
ble
ise
ce-
the

-
e

,

PRE 59 3403STRAIN OF A BIOMEMBRANE CAUSED BY A LOCAL . . .
(122s)21 should be used instead of (11s)/(12s) and
one should omith in the expression forf @18#. In the case of
a thin infinite elastic plane to which the localized forceF
5F0d(r ) is applied in the coordinate origin the expressi
for the displacement vectoru5(ux ,uy) has the form

ux52
32s

8pm*
F0x ln

r

L
1

11s

16pm* $F0x cos 2u1F0y sin 2u%,

uy52
32s

8pm*
F0y ln

r

L
1

11s

16pm* $F0x sin 2u2F0y cos 2u%,

~2!

whereF0x andF0y are the projections of the localized forc
r and u are the cylindrical coordinates of the radius vect
An arbitrary constant vector can be added to the solution
~2! for the displacement vector, since it describes displa
ment of the whole plate as a solid body. This makes it p
sible to introduce an arbitrary parameterL with the dimen-
sion of a length~usually it is a plate size! @17#. Its value must
be specified making use of conditions on the plate bou
aries ~or at infinity!. The strain fieldu(x,y)5(ux ,uy) de-
scribing by Eq.~2! caused by the forceF5(F0,0) applied
along 0x axis is shown in Fig. 2~a!. Thus in a thin plate the
strain caused by the local force depends logarithmically
distancer from the observation point. In a finite plane th
causes a strong influence of boundary conditions on the

FIG. 2. The view of the displacement fieldu5(ux ,uy) caused
by the local force applied along 0x axis as the function of the
dimensionless coordinates (kx,ky). ~a! The displacement field in
the thin elastic plate described by Eq.~2!. The cutoff distance is
chosen to beL5r c5k21. ~b! The displacement field in the mem
brane described by Eqs.~5! and~6!. The Poisson ratio it taken to b
s50.5. The dashed rectangle shows the regionr !r c where equa-
tions of the conventional theory of thin plates~2! with L5r c ap-
proximate the complete Eqs.~5! and~6!. The point shows the place
where the local force is applied.
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lution. In particular, the solution strongly depends on t
mutual disposal of the point where the local force is appl
and the plate boundaries. Some details and examples of e
solutions for thin plates to which local forces are applied o
can find in Ref.@17#. Thus in the case of the elastic thin pla
described by Eq.~1! and ~2! the influence of the boundarie
can in no case be considered as a small one.

However, results of the magnetic tweezers measurem
on the membranes of mouse fibroblasts seem to contra
this picture. First, in a series of measurements an ab
~possibly, exponential! decay of the displacement with dis
tance from the magnetic bead was observed, while in ano
set of experiments the decay was observed to be more ge
Second, observations show that the membrane displace
field caused by the magnetic bead placed in different part
the membrane surface is very different, but up to now
indication was observed that it systematically depends on
distance of the magnetic bead from the boundary of the
region @13# as should be expected from the convention
elastic theory@17#.

This contradiction could be understood in taking into a
count the complex architecture of cell membranes. Anim
cells usually exhibit a composite membrane consisting o
lipid bilayer, associated integral proteins, and an extrace
lar matrix. The bilayer is attached to a cellular cytoskelet
The latter consists of a membrane coupled actin cor
which is connected to the bulk cellular cytoskeleton@19#.
Due to membrane complexity, the equation describing the
elastic response should differ from the simple equation of
elastic plate~1!.

Note that one has already faced an analogous situa
considering a normal force locally applied to a membra
@20#. If a local normal force is applied to a flat bilayer~or to
a thin flat plate!, the displacement of the bilayer is lon
range. Hence, boundary conditions play an important r
independent of the lateral dimensions of the plate@18#. How-
ever, if a normal local force is applied to a cell membran
the contribution of the cytoskeleton localizes its normal d
placement, even if the membrane is flat@20#. This result
enables us to expect that in the case of a force acting a
the membrane surface the cytoskeleton may play a sim
role.

In the present paper we propose to add to the equation
elastic equilibrium of a biomembrane a term describing
contribution of the cell cytoskeleton to the restoring forc
We show that due to this contribution the membrane str
under application of a local tangential force is short range
the light of these results we discuss the above contradict
in the magnetic tweezers experiments on the membran
the mouse fibroblasts cell.

We assume that contribution of the cell bulk cytoskelet
gives rise to an additional restoring force acting on the ac
cortex. The cytoskeleton consists of actin and intermed
filaments and microtubules and contains both extenda
~elastic! and non-extendable elements. Both of them give r
to a restoring force proportional to the membrane displa
ment. Consider two naive mechanical models illustrating
origin of this restoring force~Fig. 3!. In these models a thin
elastic plate~representing the membrane! is attached to some
rigid substrate either by springs@Fig. 3~a!#, or by non-
extendible filaments under tension@Figs. 3~b! and 3~c!#.
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These models reflect the fact that cell membrane is usu
attached by its cytoskeleton to an immobilized cell part. T
both models serve to show that there is a restoring force
acts on the plane from either the springs@Fig. 3~a!#, or the
filaments@Figs. 3~b! and 3~c!#. This force can be characte
ized by a spring constant.

To return from the simple mechanical models to the c
of the cell membrane, one should add a restoring force2xu
to the equations of equilibrium, wherex is a phenomenologi-
cal spring constant density depending on elastic propertie
the cytoskeleton. The equation of mechanical equilibri
takes the form:

Du1
11s

12s
grad divu2k2u52f, ~3!

where k25x/m* .0. In the case of the local forceF
5F0d(r ) and correspondinglyf5f0d(r ). Making use of the
Fourier transformation one gets

uq5
f0

q21k2
2

~11s!

2

q~q–f0!

~q21k2!S q21
12s

2
k2D , ~4!

FIG. 3. Mechanical model illustrating arising of a restorin
force in a membrane. ~a! The plate~1! representing the membran
is attached to a substrate~3! by springs~2! with the total spring
constantk and the restoring forceF rest5ku. ~b! The plate~1! is
attached to a substrate~3! by filaments~2!, length H, which are
under a constant tensionT. ~c! A force F applied to the plate
causes its shiftu, a tilt of filaments beinga'u/H and a restoring
force F rest5T sina'Tu/H. h is the membrane height.
lly
e
at

e

of

whereq is the wave vector anduq is the Fourier transform of
the displacement vector.
The inverse Fourier transformation yields the exact solut
of Eq. ~3!:

ux~r !5
F0

2pm* H 1

2
K0~kr !1

12s

4
K0~k1r !

2cos 2uFK1~kr !

kr
2A12s

2

K1~k1r !

kr

1
1

2
K0~kr !2

12s

4
K0~k1r !G J , ~5!

uy~r !52
F0 sin 2u

2pm* H K1~kr !

kr
2A12s

2

K1~k1r !

kr

1
1

2
K0~kr !2

12s

4
K0~k1r !J , ~6!

whereK0 andK1 are the modified Bessel functions andk1
5@(12s)/2#1/2k. We assumed here that the forceF0 is ap-
plied along the 0x axis F05(F0,0). Note that Eqs.~5! and
~6! give the exact expression for the Green’s function of
thin elastic plate supporting by an elastic substrate. The
placement fieldu(x,y)5(ux ,uy) describing Eqs.~5! and~6!
is shown in Fig. 2~b!. Dependence of the componentux of
the displacement vector on coordinates is displayed in F
4~a!.

FIG. 4. Dependence of the componentux ~a! of the membrane
in-plane displacement vector and of the trace of the strain ten
«p1«uu on coordinates. ~i! shows the position of the disk.
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PRE 59 3405STRAIN OF A BIOMEMBRANE CAUSED BY A LOCAL . . .
Rotationv of the membrane elements is described by
relation v5]ux /]y2]uy /]x. Making use of the Fourier
transform ~4! one can find the explicit expression for th
rotation caused by the local forceF05(F0,0):

v52
k~11s!F0

pEh
K1~kr !sinu. ~7!

The rotation changes its sign on the 0x axis.
An especially simple form takes the combination« rr

1«uu of the components of the strain tensor« i j in the cylin-
drical coordinates,

« rr 1«uu52
~12s!k1

4pm*
F0 cosuK1~k1r !, ~8!

that describes the two-dimensional stretching, or compr
ing of the membrane. Note that the membrane is free in
direction normal to its surface. Therefore, the in-plane me
brane stretching is followed by its compression in the dir
tion normal to the plane. Dependence of the trace of
strain tensor on coordinates is shown in Fig. 4~b!.

The solution~5!–~8! is rather unwieldy. However, it con
tains a cutoff parameter with the dimension of lengthr c
5k215@m* /x#1/2, making it possible to consider short- an
long-range regimes. In the short-range regime (r !r c), mak-
ing use of the expansionsK0(kr )'2 ln(kr/2)2g1¯ and
K1(kr )'(kr )211kr $2 ln(kr/2)12g21%/41¯ for the
modified Bessel functions@21#, ~g is the Euler constant! one
returns to the solutions of the flat theory of elasticity, Eq.~2!.
As already noted above, in the conventional theory of t
plates conditions at the plate boundary must be taken
account when the local force is applied to the plate. In c
trast, in the case under consideration if the size of the m
brane is much larger thanr c one can use the solutions Eq.~2!
as if the membrane were infinite and free at infinity. Th
simplification arises because displacements@Eqs.~5! and~6!#
caused by the local force at the plate boundaries are n
gible.

In the opposite regimer @r c „using the expression
Kn(kr );(p/2kr )1/2exp(2kr), n50,1 @21# and keeping the
most slowly vanishing terms in the solutions Eqs.~5! and
~6!… one gets the asymptotics:

ux;
F0~12s!cos2 u

4m* ~2pk1r !1/2
exp~2k1r !; uy;ux tanu. ~9!

Thus the components of the displacement vector descr
by the model Eq.~3! increase logarithmically underr→0
(r !r c) and exponentially vanish at large distance (r @r c).

The approximate expressions for the rotation in the t
regimes take the form

v'H 2
~11s!F0 sinu

pEh

1

r
, r !r c

2
k1/2~11s!F0 sinu

Eh~2pr !1/2
exp~2kr !, r @r c

. ~10!

To discuss the results, consider the experimental ge
etry in more detail. One should distinguish two regions of
e
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membrane. The first is the one attached to the magnetic b
It is a disk, radiusR ~Fig. 5, region ii!. The second region is
the one outside the disk. Coating the bead with fibronecti
known to cause clustering of integrin molecules. It is t
matter of general experience that such clustering gives ris
formation of stress fibers@22,23#. This is a reason to expec
that actin filaments and bundles„Fig. 5~a!, fragment j…
should be formed in this region. They connect the disk„Fig.
5~a!, fragment ii… either with the bulk cellular cytoskeleton
or with the bottom membrane. IfR!r c , one can consider
the problem within the approximation of a local force. In th
case a resulting local forceF05(F2Fb)d(r ) is applied to
the membrane. HereF is the force applied to the disk from
the part of the bead andFb is the counterforce from the par
of the filaments and bundles connected to the adhesion c
plexes within the disc„Fig. 5~a!, fragmentj…. One findsFb
52pR2xbu0 , wherexb is the spring constant density re
lated to the filaments and bundles andu0 is the displacemen
vector of the magnetic bead. One can obtain an approxim
value of the magnetic bead displacement by averaging
displacement over the angle atr 5R. With the help of Eqs.
~5! and ~6! one findsu05(u0x,0) with

u0x5
F2pR2xbu0x

4pm* $K0~kR!1~12s!K0~k1R!%.

~11!

FIG. 5. ~a! Schematic view of the model of the cell lobe with th
magnetic bead attached to the top membrane.~i! the bead;~ii ! the
part of the membrane to which the bead is attached referred t
the disc; ~iii ! the top and the bottom membranes;~j! the actin
bundles caused by the attachment of the bead;~jj ! the unstressed
and~jjj ! the stressed parts of the cytoskeleton.~b! The equivalent
mechanical circuit. The dashpot with the effective coefficient
viscous frictiongd is attributed to the viscous motion of the bea
relative to the membrane in the disk region; the dashpotgm and the
spring with the constantkm describe the viscoelastic behavior of th
membrane; the springkb describes the contribution of the filamen
and bundles attached to the disk.
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3406 PRE 59A. A. BOULBITCH
Making use of Eq.~11! one obtains the force-displaceme
relation

F52~gm* 1pR2xb!u0 , ~12!

where g is the dimensionless geometric factor:g
54p$K0(kR)1(12s)K0(k1R)%21 One can consider the
parameterk5gm* 1pR2xb as an effective spring constan
of the system.

So far, we have considered the elastic behavior of
system. Now we discuss briefly its viscous behavior. O
should expect two kinds of viscous motion in the syste
The first of them is related to the viscous flow of the ac
cortex outside of the disk. It can be characterized by its v
cosityhm . Due to its contribution the equation of motion o
the bead contains a term describing a viscous friction. I
characterized by an effective coefficient of viscous fricti
gm with gm;hm .

The second is related to the viscous behavior of the d
itself @region ii, Fig. 5~a!#. Consider the strain tensor« i j in
the vicinity of the disc boundary. IfR!r c , one finds

« rr 1«uu'2
~12s!F

4pm*
cosu

R
;

« rr 2«uu'2
F

2pm*
cosu

R
; 2« ru'

~12s!F

4pm*
sinu

R
.

~13!

One can see that the value« rr 1«uu , Eq. ~13!, is negative at
2p,u,p. This corresponds to the in-plane tensile stra
that takes its maximum value atu50, r 5R, i.e., in front of
the disk@Fig. 4~b!#. The high value of the tensile strain, E
~13!, and of the corresponding stress, should give rise t
manifested plastic behavior in the vicinity of a pointu50,
r 5R. Analogous dependence is demonstrated by the com
nation« rr 2«uu of components of the strain tensor, descr
ing an in-plane biaxial tension that also takes its extrem
value atu50, r 5R. In contrast, the shear component of t
strain tensor« ru takes its extremum values atr 5R, u5
6p/2. Therefore, since the plastic flow anyway takes pla
in the actin cortex, it will be maximum at the points of th
disk boundaryr 5R; u50 andu56p/2. However, the mo-
lecular structure of the membrane in the disc is differ
from that of the outside membrane. Hence, the viscosity
the diskhd is different fromhm . The viscosity of the disk
gives rise to a viscous friction term in the equation of moti
of the bead characterized by an effective coefficient of v
cous friction gd . The latter describes the viscous frictio
during the bead motion relative to the membrane.

One can, therefore, describe the system in terms o
equivalent mechanical circuit with a Kelvin-Zener circu
and a dashpotgd in series@Fig. 5~b!#. One of the two springs
of the Kelvin-Zener circuit with the spring constantkb
5pR2xb describes the elastic contribution of actin filamen
and bundles attached to the disk, and the other one with
spring constantkm5gm* accounts for the elastic contribu
tion of the membrane. It is in series with the dashpotgm .

Discuss in more details the nature of the restoring for
In the present approach, the cell membrane consisting o
lipid bilayer attached to the actin cortex is represented b
e
e
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thin viscoelastic plate supported by an elastic substrate. M
netic tweezers measurements are made on a cell lobe~Fig.
1!. The lobe shape makes it possible to assume that its
membrane is flat. The bottom membrane can be consid
as rigid and fixed to the solid substrate. A basic assump
of the present model is that the actin cortex is coupled to
bulk cytoskeleton. The latter consists of microtubules, int
mediate filaments and actin filaments. The bulk cytoskele
may consist of unstressed and prestressed compartm
The unstressed parts of the cytoskeleton can be characte
by the number densitynun of attachments of these compo
nents to the actin cortex and by an average spring cons
kun. They are shown schematically in Fig. 5~a! @cf. Fig.
3~a!#. The prestressed parts of the cytoskeleton consis
filaments and bundles under tension. They may either p
etrate the whole thickness of the lobe connecting the top
the bottom membranes, or connect the top membrane
stressed region of the network, that is attached to the bot
membrane by another filament. Assume that the lobe p
sessesnst such filaments per unit area and that they exh
an average tensionT @cf. Figs. 3~b! and 3~c!#. An in-plane
displacement of the cortexu5(ux ,uy) is followed by tilting
of the stress fibers in the prestressed parts of the cytos
eton. It causes bending of the stiff microtubules and interm
diate filaments and stretching of wrinkles and meshes of
unstressed parts of the cytoskeleton. Under a lateral m
brane displacementu both mechanisms give rise to a resto
ing force uFrestu5S(Tnst tana1kunnunuuu), where S is the
membrane area,a being the tilt angle@Fig. 3~c!#. The first
term describes the contribution of the prestressed and
second one that of the unstressed cytoskeletal compon
Making use of the relation tana'u/H one finds Frest5
2S(Tnst/H1kunnun)u. HereH is the distance between th
top and the bottom membranes of the cell lobe@Figs. 3~b!,
and 5~a!#. One defines the coupling constantx as Frest5
2Sxu, whence it followsx5kunnun1TnstH. Thus, one ob-
tains

r c5S m* H

kunnunH1Tnst
D 1/2

. ~14!

In the case of a thin lobe (H!Tnst/kunnun) one findsr c
'(Hm* /Tnst)

1/2. In this limit the cutoff radius is determined
by the tension of the stress fibers. In the opposite case
gets the cutoff radius depending on the unstressed par
the cytoskeletonr c'(m* /kunnun)

1/2. In a real cell the
mechanism of formation of the restoring force can be m
complicated. Therefore, one should consider the coup
constantx as a phenomenological parameter.

We show that the restoring force caused by the cytos
eton should be taken into account in equations of equilibri
of the cell membrane. Assuming that the membrane is
mogeneous, this contribution is described by the pheno
enological parameter—the cutoff distancer c5k21. It makes
the displacement caused by a local tangential force to
localized within the region the size of which is of the ord
of the magnitude ofr c . The experimental results@13# give
an estimation of the cutoff distance of approximately a f
micrometers. An analogous result was obtained earlier in
case of a local force applied normally to the cell surface.
the latter case this was the effect of contributions both of
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bulk cellular cytoskeleton and the rigidity of the curved c
lular membrane@20#. Therefore, it is established that the l
cal force applied under an arbitrary angle to the cell surf
causes its localized displacement within a cutoff distan
This result is in agreement with the observations of Gloga
et al. @6#. In their work the local force was applied normal
to the surface of a stromal cell. The observations were in
preted in terms of a model suggesting that application o
normal force is followed by opening of Ca11 channels
within a distance determined by some threshold tension.
the basis of the results of the present paper, one can see
this distance is somewhat smaller than the cutoff rad
Glogaueret al. observed that the influx of Ca11 was ac-
companied by an accumulation of actin in the vicinity of t
disk @6#. This gradually increases the rigidity of the cytos
eleton and the coupling constantx. Our results show that in
this case the cutoff radius gradually decreases. This sh
reduce the number of channels opened, and gradually
the actin accumulation, in correspondence with the obse
tion of the paper@6#.

The description of the membrane strain with the const
value of r c is related to the assumption that the actin cor
and the adjacent part of the bulk cytoskeleton are homo
neous along the cell surface, which is not the case in
cells. The actin cortex and the bulk cytoskeleton are hig
dynamic structures, and a number of effects cause inho
geneities in the membrane. For example, depolymeriza
ll
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of cortical actin, a decrease in cross linking of actin filame
or even a rupture of the cortex can locally reduce the e
ticity of the cortex or density of the bulk cytoskeleton adj
cent to the membrane. If the scale on which the membr
significantly changes its properties is larger thanr c , the
above approach is valid. In this case if in some region
spring constant densityx is small and the Young’s modulu
is large, the cutoff distancer c may be relatively large and th
membrane behaves like a conventional thin elastic plane
contrast, in the regions with a small value ofE and a largex,
the cutoff radius may be rather small. In particular, it c
become as small as the size of the paramagnetic bead. In
case displacements of the nonmagnetic beads can be h
observed. These considerations can explain the ab
mentioned experimental observations@13#, which previously
seemed to be self-contradictory.

In this paper we propose that, except the strain, no o
internal degree of freedom of the membrane remarkably
fluences its in-plane displacement. At the present time
perimental results are not enough to find out to what ext
this assumption is correct—its clarification requires furth
investigations.
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